skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Montes, Cristián R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the last three decades, many growth and yield systems developed for the southeast USA have incorporated methods to create a compatible basal area (BA) prediction and projection equation. This technique allows practitioners to calibrate BA models using both measurements at a given arbitrary age, as well as the increment in BA when time series panel data are available. As a result, model parameters for either prediction or projection alternatives are compatible. One caveat of this methodology is that pairs of observations used to project forward have the same weight as observations from a single measurement age, regardless of the projection time interval. To address this problem, we introduce a variance–covariance structure giving different weights to predictions with variable intervals. To test this approach, prediction and projection equations were fitted simultaneously using an ad hoc matrix structure. We tested three different error structures in fitting models with (i) homoscedastic errors described by a single parameter (Method 1); (ii) heteroscedastic errors described with a weighting factor $${w}_t$$ (Method 2); and (iii) errors including both prediction ($$\overset{\smile }{\varepsilon }$$) and projection errors ($$\tilde{\varepsilon}$$) in the weighting factor $${w}_t$$ (Method 3). A rotation-age dataset covering nine sites, each including four blocks with four silvicultural treatments per block, was used for model calibration and validation, including explicit terms for each treatment. Fitting using an error structure which incorporated the combined error term ($$\overset{\smile }{\varepsilon }$$ and $$\tilde{\varepsilon}$$) into the weighting factor $${w}_t$$ (Method 3), generated better results according to the root mean square error with respect to the other two methods evaluated. Also, the system of equations that incorporated silvicultural treatments as dummy variables generated lower root mean square error (RMSE) and Akaike’s index values (AIC) in all methods. Our results show a substantial improvement over the current prediction-projection approach, resulting in consistent estimators for BA. 
    more » « less